2026/01/19 21:30 1/3 Superclasse

Superclasse

e cwbBpaWizard: Finestra di gestione wizard da estendere

Interfacce

e wizardable: Interfaccia da implementare obbligatoriamente

Wizard Container

Per creare un wizard va creata una form 'container' con all'interno:
* la buttonBar (tasti gestiti: Avanti, Indietro, Annulla e Concludi).

* un div segnaposto chiamato 'divGestione' su cui verranno inserite le form dei vari step.

Questa form container dovra estendere la classe cwbBpaWizard mentre le form dei singoli step
dovranno implementare I'interfaccia wizardable. Sulla form container nel metodo initVars vanno
valorizzate le seguenti proprieta:

* nameForm: il nome della form container
* firstStepName: Il nome della form utilizzata come primo step
* lastStepName: || nome della form utilizzata come ultimo step

* DBName: Il nome del db da usare per la connessione (es. 'CITYWARE')

[l primo e I'ultimo step sono quindi obbligatoriamente fissi, mentre tutte le form intermedie sono
dinamiche.

Nella superclasse € presente una variabile'navigationRules' che & una linkedlist che gestisce il flusso.
La variabile navigationRules ha un metodo current ($this—navigationRules—current()) che specifica la
form corrente in cui ci troviamo e una variabile currentKey ($this—»navigationRules—currentKey()) che
indica il numero di passo.

Nel metodo preNext va gestito il comportamento del wizard al click del tasto avanti (va impostato
qual'e lo step successivo e le azioni/parametri da passare). Come parametro arrivano 'currentStep' e
‘currentKey' che contengono il nome della form dello step corrente e il numero di step. Per
aggiungere uno step alla navigationRules va chiamato il metodo addStepToNavigationRules
passandogli come parametro il nome della form successiva

wiki - https://wiki.nuvolaitalsoft.it/

Last update: 2018/03/19

10:45 sviluppo:cityware_wizard https://wiki.nuvolaitalsoft.it/doku.php?id=sviluppo:cityware_wizard&rev=1475672379

($this—addStepToNavigationRules('nomeDelloStepSuccessivo')).

es implementazione preNext:

protected function preNext($currentStep, $currentKey) {
switch ($currentStep) {
case 'cwdForml':
$x = $ POST['cwdForml x'];
switch ($x) {
case "1":
$this->addStepToNavigationRules('cwdForm2'); // se x=1
aggiungo cwdForm2 come step successivo
// codice....
break;
case 2:
$this->addStepToNavigationRules('cwdForm3'); // se x=2
aggiungo cwdForm3 come step successivo
// codice....
break;
}
break;
case 'cwdForm2':
// se non aggiungo uno step successivo, vado allo step finale
// codice....
break;

Implementando I'interfaccia wizardable, verra richiesto di implementare i metodi:

* validaWizardStep($formData, &$msg) in cui va gestita la validazione della form al click del
tasto 'avanti'. Il metodo deve tornare true o false in base al risultato e concatenare i messaggi di
errore su $msg.

* setValuelndietro() che serve per settare eventuali var che si vogliono mantenere all'indietro.Deve
tornare un array di elementi con chiave il nome del setter delle proprieta da gestire e valore i
rispettivi record contenuti. es. Si deve utilizzare per risettare il valore delle grid. Questo perché dalla
$_POST non & possibile reperire il contenuto della grid per metterlo in cache e quindi all'indietro si
perderebbe il contenuto.

Per gestire il salvataggio finale/azioni varie & possibile in ogni step, aggiungere delle operazioni o
salvarsi dei dati.

* Aggiungere Dati: $this—»addFixedParameterCache($key, $value, $formName = null, $formKey =
null);

In questo modo si aggiunge un valore in cache per poi riutilizzarlo alla fine (metodo postComplete). Se
viene passata $formName oppure $formName e $formKey questo valore viene pulito in automatico
facendo indietro dalla form '$formName' se invece non si passa $formName il valore rimane fisso ed

https://wiki.nuvolaitalsoft.it/ Printed on 2026/01/19 21:30

2026/01/19 21:30 3/3 Superclasse

al limite pu0 essere cancellato a mano (cleanFixedParameterCache). es.
$this»addFixedParameterCache('CODPROF', $ POST['cwdDtaTitstuWiz_ CODPROF'], $currentStep,
$currentKey);

* Aggiunta Operazioni: $this»addOperationCache($formDataName, $formDataKey, $operationKey,
$operation, $table, $value, $recordinfo = null)

In questo modo si aggiungo operazioni che vengono eseguite in maniera automatica al click finale su
‘Conferma’.

€s.

$value = array('‘PROGENTE' = 1,'DESCRIZ' = “Prova”,'ALIAS' = “PROVA");
$thismaddOperationCache($currentStep, $currentkKey, “salvoGruppi”,
itaModelService::OPERATION_INSERT, “BOR_GRUPPI", $value);

Al click su 'Conferma’, viene aperta la transazione, vengono eseguite in automatico tutte le operazioni
e poi viene chiamato il postComplete($db) in cui si possono eseguire altre operazioni (anche
basandosi sui dati 'appoggiati' in cache tramite addFixedParameterCache). Alla fine di tutto viene
chiusa la transazione. Al postComplete va usato come $DB quello che arriva come parametro in modo
da mantenere la transazione. Quindi tutte le operazioni eseguite al 'Conferma’' sono nella stessa
transazione e se fallisce un operazione, falliscono tutte. Se vanno eseguite delle operazioni fuori
transazione,al 'conferma’' & disponibile anche il metodo generateOutput() che parte dopo
postComplete ed e fuori transazione.

Per gestire i messaggqi finali, in caso di errore o esito positivo, nella superclasse ci sono
$completeErrorMsg e $completeMsg che vanno valorizzati con i messaggi da stampare
($completeMsg se non valorizzato di default prende: 'Pratica conclusa con successo').

From:
https://wiki.nuvolaitalsoft.it/ - wiki

Permanent link:

Last update: 2018/03/19 10:45

wiki - https://wiki.nuvolaitalsoft.it/

https://wiki.nuvolaitalsoft.it/
https://wiki.nuvolaitalsoft.it/doku.php?id=sviluppo:cityware_wizard&rev=1475672379

	Superclasse
	Interfacce
	Wizard Container

